
Cloud-Native CI/CD:
SEVEN Requirements

JFrog Ebook

TABLE OF CONTENTS

Container Run
 Runtimes Out of the Box
 Custom Runtimes Enabled
 Orchestrated by Kubernetes

Observable
 Real-Time Activity
 Rich Logging, Monitoring and Analysis
 Capturing Performance
 Connectable for Power

Enables Cloud Native Development
 Docker Smart
 Kubernetes Connected

How JFrog Measures Up

Introduction
 What is CI/CD?
 What is Cloud Native?

Built on Cloud Native Standards
 Born in the Cloud
 Built on Established Tools
 API Control

Infrastructure Agnostic
 Managed for Multicloud
 Self-Hosted for Hybrid
 Feature Equivalence

Infinitely and Dynamically Scalable
 On-Demand Computing
 Pipeline Concurrency

Configured by Code
 Speaking Cloud Native
 Code with Best Practices

2 10

12

14

15

4

6

8

9

1

With the rise of the cloud in IT operations, it’s become extremely important that those operations, and the tools you use for them, be “cloud native.”

At the same time, as enterprises adopt DevOps as part of their digital transformation, CI/CD is now the powering engine of their Software Development Life Cycle. How
efficiently your CI/CD runs in your operations environment -- which is increasingly reliant on the cloud -- can make the difference between success and failure.
So it's no surprise that many CI/CD solutions seek to claim the mantle of cloud native. But are they?

The software development practices of continuous integration/continuous deployment (CI/CD) mean developing and releasing with smaller, incremental changes, leading to
much more frequent builds. Instead of major annual, semi-annual, or quarterly releases, CI/CD may produce a new minor release every day -- or even several each day.
This greater frequency is enabled by a CI server tool, whose job is to use the power of the network to automate and distribute the work of building, testing, releasing, and
deployment.

2

JFrog Ebook

INTRODUCTION

WHAT IS CI/CD?

Here’s how the Cloud Native Computing Foundation defines cloud native:

 “Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic
 environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable
 infrastructure, and declarative APIs exemplify this approach.”

That’s a very broad definition. Here’s how we like to think of it:
Cloud native solutions make use of methodologies that effectively utilize cloud technology infrastructure, and enable the inherent best characteristics of the cloud:

WHAT IS CLOUD NATIVE?

JFrog Ebook

3

Elasticity - Leveraging the power of the network to expand and release resources as needed.

Global Scalability - Using the reach of worldwide networks to provide concurrent service to and from
anywhere.

Always Available - Ensuring uninterrupted 24/7 performance, regardless of load.

Resilience - Composed of loosely coupled services that can either self-correct or isolate failure while the
remaining services continue to operate.

Observability - Making operations transparent to administrators or users through standard or custom tools.

Now that we’re clear on what CI/CD and cloud native means, how does this shape our expectations of a cloud
native CI/CD solution?

What should a cloud native CI/CD solution look like?

The Cloud Native Computing

Foundation (CNCF) is the central,

vendor-neutral home of several

cloud-enabling open source

projects, including Kubernetes,

Prometheus and Envoy. With all

the world’s largest cloud

computing companies as

members, as well as many

innovative solution providers

(including JFrog), the CNCF is the

cooperative organization that

helps define and promote cloud

native development.

4

JFrog Ebook

When you update your automobile engine, you need to use tools and parts designed to fit. Sure, you might make something else work but how well
and for how long?

The same principle applies to your operations infrastructure. Any solution run in a cloud should use the established technologies meant to make cloud
computing work at its best.

BORN IN THE CLOUD
A truly cloud native solution is one that was written for the cloud from the start, and architected around the technologies designed to enable the cloud’s benefits.

There are many CI/CD solutions available, but often they were initially developed for pre-cloud technologies. Those legacy solutions may have been adapted to run in
container-based environments, but they’re still adaptations, often limited by their original design. Each new innovation in cloud technology will put new stress on
their architecture. A legacy solution made functional in the cloud isn’t necessarily optimal for the cloud.

Your CI/CD solution shouldn’t just work in the cloud, it should be architected for the cloud. At minimum, it should operate as a set of microservices that use cloud
native technologies like containers, immutable runtimes, and orchestration. Cloud native CI/CD should be designed to use, and make the best use of, cloud native
standards.

BUILT ON CLOUD NATIVE STANDARDS

BUILT ON ESTABLISHED TOOLS
Your cloud operations already rely on established cloud native tools like Docker and Kubernetes. Your teams have experience with them, know how they work,
and have a large ecosystem of tools available to manage and monitor them. You can count on those tools being widely supported.

JFrog Ebook

5

You’ll want other software and scripts to interact with your CI/CD solution, in order to automate its configuration, to integrate with other tools, and to enable
oversight.

REST is the technology that cloud applications use to talk to each other. A cloud native solution should provide a robust set of RESTful APIs for CI/CD, to fully
integrate with the rest of your operations.

API CONTROL

A cloud native CI/CD solution should run on these standard tools, making it easy for you to leverage the tools you possess and the techniques you’ve established to
run your operations.

At best, your CI/CD solution should be more than just integrated with these cloud staples -- Docker and Kubernetes should be part of their DNA. Your CI server
engine should not only install on K8s, but run tightly aligned with K8s as well, relying on its orchestration facilities to keep workloads running.

To be cloud native, your CI/CD must be interoperable on many systems, regardless of the underlying hardware. Any solution will require resources such as file storage, but it
should be able to operate with several service types, to maximize system compatibility.

When your CI/CD is truly cloud native, it enables you to be cloud nimble, and operate on any cloud you choose without sacrifice, whether that’s a commercial cloud service or
on an on-premises cloud in your own datacenter.

INFRASTRUCTURE AGNOSTIC

6

JFrog Ebook

MANAGED FOR MULTICLOUD
A solution that’s cloud native can and should be readily provided by its vendor as a managed service through the SaaS model. When you subscribe to a managed service, you
gain an inherently scalable, always-available solution that is administered by the vendor. You can contain your CI/CD operational costs by paying for resources such as file
storage and build minutes as you use them.

But availability on a single cloud service provider isn’t enough. Cloud native is of limited benefit if you are locked into a single cloud platform. To be cloud nimble, your
managed service CI/CD should be available on at least all of the major cloud providers (AWS, Google Cloud Platform, and Azure).

Having these provider options enables you to practice a multicloud strategy for your CI/CD, to increase agility, share and shift workloads across cloud providers, maximize cost
savings, and create redundancy for disaster recovery.

JFrog Ebook

A solution whose cloud and on-prem editions run with a different UI, features, or functionality simply isn’t likely to be cloud native. At least one of those editions is certain to
be an adapted legacy product, rather than one that was designed for the cloud from the start.

Your developers should never have to think about what platform their CI/CD is running on, because it always looks and functions the same. When a solution is fully plat-
form congruent, you’ll never have to compromise features to interoperate cloud-to-cloud or cloud-to-on-prem.

7

FEATURE EQUIVALANCE
Being cloud native means never having to give anything up for your chosen platform. If your CI/CD is architected around standard cloud technologies, it should operate
with the same capabilities no matter what cloud it runs in.

8

Scalability is what the cloud is all about: to serve changing demand, support growing teams, and stretch your operations across the globe. And you need all your
services to scale up and down quickly without interrupting work.

INFINITELY AND DYNAMICALLY SCALABLE

ON-DEMAND COMPUTING
Any cloud native CI/CD should be as elastic as the cloud it runs in, and smart enough to respond to high and low demand. It should fetch build resources when
they're needed and release them when they’re not.

On-demand computing can keep your CI/CD humming nonstop without limit, while helping your costs drop as demand does.

PIPELINE CONCURRENCY
This cloud native feature enables pipeline concurrency, a feature that provides benefits in two dimensions.
First is the ability to execute concurrent workloads within a single build pipeline. Steps that aren’t dependent on each other’s outputs can be run in parallel in
separate runtime resources, speeding the work to twice as fast or more. When spun up on-demand, spare compute engine resources don’t need to be held idling in
reserve.

Additionally, it also enables running many concurrent pipelines from a single, central CI/CD server, eliminating the sprawl of multiple CI servers spread throughout
an organization. To help keep that growing number of users and jobs performant, a proper cloud native solution can be deployed with high availability through
redundant, load-balanced nodes.

JFrog Ebook

9

JFrog Ebook

9

Cloud native solutions enable operations through code, bringing a developer-focused experience to tasks like provisioning infrastructure and deployment.

CONFIGURED BY CODE

SPEAKING CLOUD NATIVE
Cloud native technologies like Helm, Kubernetes and more are powered through declarative configuration files. Those files are written in YAML, the language of cloud native.
The simple key-value structure of YAML enables developers to specify what they want and rely on the tool to decide how to fulfill it for the underlying infrastructure.

CI/CD that’s cloud native should do the same, relying on declarative pipelines that can be specified through a YAML-based DSL. This frees developers to concentrate on the
actions their pipelines must perform, and leave it to the CI/CD tool to get them done.

CODE WITH BEST PRACTICES
Developers should be enabled to treat their pipeline code with the same software best practices as they do the rest of their code, through a version control system. So
cloud native CI/CD should have the ability to easily integrate with Git source control repositories from the moment it’s first installed.

This enables your teams to store and maintain your pipeline configuration files in source repos, and practice the same collaborative procedures to develop and maintain
them as they are accustomed to. Your pipeline code files will also be protected by the same backup and recovery precautions you already practice for source control.

Once the CI/CD server is connected to your source repos, it can load the pipeline configuration files stored there directly from those repos, and refresh any time there is a
change. By being separate from the CI/CD solution, it’s easy to reliably reload your pipelines for any needed systems restore, keeping time to recovery as brief as possible.

10

An essential cloud native technology, container architectures are especially suited to the dispatch of build nodes that is the core operation of a CI server.

While virtual machines must be preconfigured by operators to perform all possible duties, container-based runtimes create and destroy an operating environment as they’re
needed. Containers can rapidly deploy repeatable, self-sufficient runtime environments to execute workloads of limited scope and duration.

A cloud native CI/CD tool must leverage container technology for runtimes, to provision your build node environments with the tools and state they need to perform their
work. This is a must for creating deterministic builds.

CONTAINER RUN

RUNTIMES OUT OF BOX
With runtimes so easy to manage, your cloud native should provide you with a core set of runtime container images that anticipate the most common workloads. In
addition to commonly used CLIs, the set should be diverse enough to support key language types, and comprehensive enough for compatibility with several popular
operating systems.

A well-considered set of runtimes will enable your teams to get started working right away.

CUSTOM RUNTIMES ENABLED
While a standard set of runtimes may fulfill most needs, you’ll want to be able to create and deploy your own runtime containers for special needs. Containers are
inherently easy to create from many OSS layer components; your CI/CD tool should be able to provision them to your build nodes using the same mechanisms as
out-of-the-box runtimes.

JFrog Ebook

11

11

When your runtime libraries are administered through container registries, IT administrators can redirect default registries to entirely customized sets, and govern
which set of runtimes departments use through an invisible flick of a switch.

Container-based runtimes encourage specialization and division of labor across DevOps teams. Operations admins can keep runtimes current, while developers can
concentrate on the steps of their builds. This specialization also enables security, as admins control what gets deployed into build nodes.

And even as container-based runtimes offer these advantages, a CI/CD solution should still permit any workload portion to run directly on a VM, to support special
circumstances that might arise.

ORCHESTRATED BY KUBERNETES
Container-based runtimes enable your build nodes to be orchestrated through Kubernetes. Any cloud-native CI/CD should leverage K8s to manage your build node
clusters for stability and scale.

JFrog Ebook

12

With their reliance on machine virtualization through containers, interfaces, and orchestration, cloud native systems are inherently opaque. The activity of a CI/CD server
can be especially complex, with concurrent, interdependent tasks distributed across multiple computing planes. So any cloud native solution must provide human opera-
tors ways to ask questions about its state and get actionable answers.

OBSERVABLE

REAL-TIME ACTIVITY
Your CI/CD should enable you to watch in real time the current activity of executing pipelines, presented in ways that are both rich in information and easy to un-
derstand. You will want to gain a holistic view of resource use, but also be able to focus on and examine key activities of interest.

You’ll want to lift the lid on everything that’s cooking, one at a time, and see how each is faring. That means being able to watch the output of any of your work-
loads as they happen. And you’ll also want to monitor your CI/CD operations as a whole, to ensure that everyone continues to be served.

RICH LOGGING, MONITORING, AND ANALYSIS
Of course you’ll need to capture all of that information in logs for future viewing and analysis. You’ll need to remember what succeeded and failed, not just today, but
last week, and figure out why. And you’ll need to be able to share that data to collaborate on corrections and improvements. So all information that can be seen in
real time should be captured and easily navigable by operators, developers, and all that may need it.

JFrog Ebook

13

CAPTURING PERFORMANCE
A cloud native CI/CD solution should help operators to analyze and tune their configurations by monitoring resource usage over time. Operations teams that can see
where and when usage of CPU, memory, build nodes and more face greater and lesser load will be better able to assure systems are fully performant. They’ll also be
able to see where resources are wasted, and help keep computing costs down.

CONNECTABLE FOR POWER
To expand your observability, your CI/CD should be able to export the data it captures to other tools for complex analytics. Your teams will be able to create their
own dashboards and metrics, and even combine this data from other sources to tune all systems for maximum efficiency.

JFrog Ebook

14

Cloud native CI/CD can’t just be cloud native, it must help you build cloud native. It should include the facilities you need to develop and produce your applications as
containerized services that can be orchestrated in the cloud.

ENABLES CLOUD NATIVE DEVELOPMENT

DOCKER SMART
At minimum, your CI/CD needs to be Docker smart, ready out of the box to build and manage Docker images for containerized applications. You shouldn’t need to
separately install the Docker CLI and supporting tools into your build node environment or configure its state.

The declarative language used to configure your pipelines should enable Docker inherently through its command set. Developers should be able to specify what
their container images should include and where to put them, then leave it to your CI/CD tool to load the Docker engine runtime, command it to build those
images, and push them to registries.

KUBERNETES CONNECTED
Similarly, your cloud native CI/CD must be equally friendly for deploying those container images to Kubernetes as part of continuous delivery. It needs to be
equipped to enable Helm, so you can reliably automate those deployments.

Declarative commands for managing Helm chart repositories and deploying to clusters through Helm charts enable developers to complete the end-to-end CI/CD
process from build to delivery into test and production.

JFrog Ebook

15

JFrog Ebook

These principles were our guideposts for creating JFrog Pipelines CI/CD, to make the best use of the cloud for creating a
robust, elastic solution that can be available anytime, from anywhere.

HOW JFROG MEASURES UP

As part of the JFrog Platform, Pipelines relies on Docker and
Kubernetes to deploy and orchestrate its own microservices.

BUILT ON CLOUD NATIVE STANDARDS

Pipelines CI/CD is available as a managed service on the major cloud
providers.

Pipelines can be installed as a self-hosted system on any public cloud,
on an on-prem cloud in your own datacenter, or a hybrid of on-prem
and public clouds.

INFRASTRUCTURE AGNOSTIC

Once running, Pipelines operates with the same features and
functionality on all platforms.

JFrog Ebook

16

Through dynamic build nodes, Pipelines can fetch build
resources from a cloud service or K8s when they're
needed and release them when they’re not.

A single, central installation of Pipelines can drive many
concurrent CI/CD pipelines at once.

INFINITELY AND DYNAMICALLY SCALABLE

Pipelines uses a declarative DSL to define workflows that
are based on YAML, “the language of cloud native” that also
powers technologies like Kubernetes and Helm.

Pipelines’ native steps provide out-of-the-box access
to most common CI/CD operations for building,
promoting, and distributing artifacts.

CONFIGURED BY CODE

JFrog Ebook

17

JFrog Ebook

By default, Pipelines executes each step of your pipe-
line in an immutable runtime container on a build
machine node. You can use the set of runtime
Docker images Pipelines provides out of the box, or
you can create your own custom runtime images. Or,
if you need to, you can run any step directly on the
host VM instead.

CONTAINER RUN

Pipelines’ rich workflow diagrams enable you to see
how your steps connect and watch the progress of your
pipelines as they execute. Pipelines captures a complete
record of every run for you to examine.

The Pipelines UI through the JFrog Platform provides
visibility into the allocation and activity of build machine
nodes and their supporting resources.

Pipelines’ comprehensive RESTful APIs enable querying
and commanding your CI/CD server, to monitor resource
utilization as well as automate configuration.

OBSERVABLE

JFrog Ebook

18

Out-of-the-box integrations for essential cloud native
tools like Docker registries and Kubernetes, enable
you to deliver the apps you build to the cloud.

Pipelines makes it easy to build for Artifactory’s many
supported package types, including Docker. Native
steps make Pipelines ready out of the box to build
Docker images, push to Docker and Helm registries in
Artifactory, and deploy to Kubernetes as part of
continuous delivery.

ENABLES CLOUD NATIVE DEVELOPMENT

Start for free:
jfrog.com/artifactory/start-free/

The Liquid Software Company

JFrog Ebook

